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● In the field of supersymmetric field theories,

there has been a big technical breakthrough

which allows us to compute many SUSY-preserving observables exactly

using explicit path integrals.

● Key idea – SUSY localization

Topics to be covered :

1.  SUSY on curved space

2.  Three-sphere partition function

3.  Squashings

4.  Yang-Mills Instantons

5.  Four-sphere partition function



  

I.  SUSY on Curved Spaces

We study the example of 3D theories in detail.

contents: • 3D N=2 SUSY theories

• SUSY on curved spaces

• Geometry of 3-sphere



  

Preliminaries



  

Spinors in 3D

● Gamma matrices for

● Generators of Lorentz transformation in spinor representation

● Lorentz transformation on vectors and spinors:

span the linear space of 2x2 real traceless matrices, so●  



  

● Invariant inner products of spinors:

● Proof of Lorentz invariance:

The inner product is usually defined using Dirac conjugate

Here we used Majorana conjugate

The two are equivalent for Majorana spinors.

Spinors in 3D



  

● Simple SUSY

the anti-commutation relation

: energy-momentum

satisfying

● Extended SUSY

R-symmetry :  The anti-commutator is invariant under

Fermionic conserved charges and

3D SUSY



  

For the R-symmetry is

One can write the algebra using

● N=2 SUSY algebra

for Grassmann-even spinors

U(1) R-charge

3D N=2 SUSY



  

3D N=2 SUSY Theories

we first discuss theories on Euclidean space



  

Spinor conventions (again)

● Gamma matrices for SO(3)

● Generators of SO(3) in spinor representation

span the linear space of 2x2 Hermite traceless matrices, so●  



  

● Invariant inner products of spinors:

● We will write

● Note:

So, for Grassmann odd spinors one has

Spinor conventions (again)



  

Let us consider a simple model,

Lagrangian:

Free Wess-Zumino model

: complex scalar

: complex spinor

Fields: Transformation rules:

● Check the invariance of the Lagrangian.

partial integration:



  

Free Wess-Zumino model

Can we reproduce the SUSY algebra

( are Grassmann even here)

● Check:

The SUSY algebra is realized on-shell.

= zero from EOM

Use Fierz identity:



  

The SUSY algebra can be realized off-shell by adding auxiliary fields.

without assuming EOM.

● Free Lagrangian:

● Supermultiplets = set of fields on which the SUSY is realized irreducibly.

chiral multiplet :

anti-chiral multiplet :

Free Wess-Zumino model



  

: scalars in the adjoint rep of G

: gauge field for the gauge group G

: spinors in the adjoint rep of G

● SUSY transformation rule

Lie algebra-valued.

(matrices)

Vector Multiplet



  

● The chiral multiplet fields can be coupled to gauge fields.

belong to the a rep of G.

belong to the a rep of G.

Matters Coupled To Gauge Fields



  

U(1) R-charges

We assign to           the R-charges

Then it follows from

that

Vectormultiplet

field

chiral multiplet

field

anti-chiral multiplet

field

: arbitrary



  

● Yang-Mills & Chern-Simons terms

● Fayet-Iliopoulos term   * for U(1) vectormultiplet only

● Kinetic terms for chiral multiplets

● F-term for chiral multiplets

= gauge invariant function of

: superpotential

Invariant Lagrangians



  

● Standard trace when writing gauge invariants

for

for

is gauge invariant up to shifts by if

● Chern-Simons action

Remarks



  

3D N=2 SUSY Theories : Summary

● N=2 SUSY algebra :

● N=2 SUSY gauge theories : can be constructed from

Vectormultiplet :

Chiral multiplet :

Anti-chiral multiplet :

gauge group G

rep.

rep.

Invariant Lagrangian :

There are 2-component supercharges satisfying

U(1) R-charge

U(1) R-charge



  

Field Theories on Curved Spaces



  

Field Theories on Curved Spaces

● Metric is curved :

● There is no preferred choice of coordinates.

   The action should be written in a general covariant way.

● Need to define spinors on curved spaces.

Spinors on curved spaces transform under local Lorentz transformations.



  

is a matrix-valued field satisfying● Vielbein

*

● Given the choice of satisfying (*) is not unique.

Different choices are related to one another by local Lorentz transformations.

● Infinitesimal local Lorentz transformation :

Vielbein and Local Lorentz Symmetry



  

Curved and Flat indices

 We need to distinguish two kinds of indices

● curved indices

transform under general coordinate transformations.

● flat indices

transform under local Lorentz transformations.

Vielbein can convert one index to the other, for example

:= constant matrices satisfying

:= coordinate-dependent, satisfy



  

is defined so that transforms the same way as

under local Lorentz transformations.

● Covariant derivative of spinor fields :

: “spin connection”

(Recall that the covariant derivatives of vectors are defined as

so that transform covariantly inder diffeomorphisms.)

Spin Connection & Covariant Derivative:



  

Levi-Civita Connection & Spin Connection

is determined from and● Levi-Civita connection 

[Recall]



  

Levi-Civita Connection & Spin Connection

is determined from and● Levi-Civita connection 

● Spin connection is determined from

By introducing the 1-forms

one can write



  

SUSY on Curved Spaces



  

SUSY on Curved Spaces

● SUSY parameters

are no longer constants, but solutions to Killing spinor equations.

● The simplest Killing spinor equation

for some

has solutions on the round sphere.



  

Show

: scalar curvature

[proof]

An Important Exercise :

use

and Bianchi identity

●  

●  



  

invariant under the following?

Q.  Is the simple general covariantization

Free WZ model revisited



  

: partial integration

cancel



  

is invariant.



  

for some

● Lagrangian :

● SUSY transformation :

where satisfy Killing spinor equation

WZ model on Curved Space : Summary



  

: vector fields on

: a scalar field on 

● Let : a metric on a 3D space

● The background is supersymmetric if

have solutions.

● Let us restrict to the case in the following.

●  is the gauge field for U(1) R-symmetry.

Generalization of Killing Spinors



  

The origin of the Killing spinor equation

are the fields in 3D              supergravity multiplet.

Generalization of Killing Spinors

which is invariant under local SUSY  (        are arbitrary functions)

Supergravity . . . a theory of graviton        , gravitino               and other fields

Killing spinor equation . . .



  

Proposal by Festuccia and Seiberg

Rigid SUSY on Curved Backgrounds

● an off-shell local SUSY theory of gravity multiplet

coupled to vector and chiral multiplets is known.

● There is a classical configuration (and                        )

such that has solutions

Then the Lagrangian of the gravity and other multiplets

● is invariant under the above

● and the above     does not change the value of gravity multiplet fields. 



  

● Vectormultiplet :

where

3D N=2 SUSY on General Curved Spaces



  

● Chiral multiplet of R-charge     :

where

3D N=2 SUSY on General Curved Spaces



  

● Invariant Lagrangians

: gauge invariant function of       of R-charge 2

3D N=2 SUSY on General Curved Spaces



  

SUSY on Curved Spaces : Summary

● SUSY parameters         on curved spaces are not constant

but solutions to Killing spinor equations.

● The general form of Killing spinor equation has origin in supergravity.

It can depend on the curved metric as well as other fields

in gravity multiplet.

● The Lagrangians & transformation rules can be generalized

from flat to curved spaces.



  

Geometry of 3-Sphere



  

Geometry of 3-Sphere

in with metric

● metric :

● vielbein :

● spin connection : solve

● symmetry :



  

● 3-sphere is the group manifold SU(2)

● metric :

● Left-invariant 1-forms :

● Convenient choice of vielbein :

3-Sphere and SU(2)



  

Let us determine the spin connection from

3-Sphere and SU(2)



  

Constant spinors satisfy

The round       of radius     with the b.g. fields

has 2 Killing spinors for both     and

Killing Spinors



  

● Define by the property

Important properties :   1) satisfies SU(2) commutation relation.

Killing Vectors

2)

[proof]



  

Geometry of 3-Sphere : Summary

● Round sphere of radius     with the background fields

is supersymmetric.

● Round sphere is -symmetric.

Metric, vielbein, Laplace operator, Dirac operator, . . . can be expressed

which transform nicely under thein terms of

● The path integral for sphere partition function can be explicitly performed

using SUSY localization.

We only need the representation theory of 



  

II.  3-Sphere Partition Function

We derive an exact formula for general N=2 SUSY theories.

contents: • SUSY localization

• sphere partition function

• applications



  

SUSY Localization



  

SUSY Localization

● We define partition function of gauge theories on 3-sphere

    by path integrals over bosonic & fermionic fields.

● We begin by reviewing basic facts and techniques

- Grassmann integral

- Gaussian integral

- Saddle point approximation



  

● Fermions are Grassmann numbers

are Grassmann numbers

● Integrals over a Grassmann number

● Note : - For Grassmann numbers, integral = differentiation.

- Integral of total derivative is zero,

Grassmann Variables



  

complex bosons

Hermite, positive definite matrix

Fermions

Gaussian Integrals



  

● path integral over free fields

Bosons

Fermions

● The determinants are the product of (infinitely many) eigenvalues.

To compute them, we need the spectrum (= eigenvalues & eigenfunctions)

of the operators

Gaussian Integrals in Field Theories



  

Perturbation theory computes      as power series in 

In the weak coupling (     small), the terms of higher order in  

becomes negligible.

● As a model of interacting field theories, let us consider

is a local minimum of

Non-Gaussian Integrals



  

We can approximate      as

This approximation becomes reliable in the limit 

Saddle Point Approximation

is a saddle point if



  

In SUSY path integrals, one can use       (one of the SUSY) to show

The non-zero contribution to the path integral localizes onto

SUSY saddle points

= bosonic field configurations satisfying

for all the fermions.

SUSY Localization



  

Consider a SUSY integral over bosons          and fermions

If we can move to a new coordinate system in which

is one of the fermionic coordinates, then the integral is zero.

One can do this change of variables as long as there are       such that 

The idea of SUSY localization

[Transformation rule]

(   : Grassmann parameter)

This change of variable is impossible where 



  

Consider a SUSY integral over bosons          and fermions

The idea of SUSY localization

[Transformation rule]

(   : Grassmann parameter)

The integral localizes to SUSY saddle points,

(which means



  

● SUSY localization implies that the saddle point approximation

(Gaussian approximation) becomes exact.

● SUSY path integrals can be simplified as follows :

1. choose a     -exact “localization term” such that

* its bosonic part has positive definite real part

* its bosonic part vanishes only at SUSY saddle points.

Computing Saddle-Point Contributions

standard choice :



  

● SUSY localization implies that the saddle point approximation

(Gaussian approximation) becomes exact.

● SUSY path integrals can be simplified as follows :

2. deform the path integral by

3. Approximate by quadratic function (exact in the limit                  )

Computing Saddle-Point Contributions

The integral is independent of t, because

* the measure is     -invariant.



  

An Application:

Sphere Partition Function



  

Let us now apply the localization argument to SUSY theories on

vector multiplet :

chiral multiplet :

Where are the SUSY saddle points?

SUSY transformation

for a specific pair of Killing spinors 

Sphere Partition Function



  

Both of the following Lagrangians are  SUSY exact.

(for any choice of Killing spinors such that )

A Shortcut to Saddle Points

Both of them can be written as

Their bosonic parts have to be zero at saddle points.

Use for a sphere of radius 



  

(at least if )

● vector multiplet

at saddle points

● chiral multiplet

at saddle points

SUSY saddle points

up to gauge transformations.

* One can assume is in the Cartan subalgebra.

For example, for              gauge group, diagonal traceless matrix.



  

The Path Integral Simplifies

Note:         is independent of YM coupling and F-term couplings.

Let . . . parametrizes the saddle points

(the value of the original action at the saddle point)Here 

It remains to compute the “1-loop determinant”

for which the Gaussian approximation is exact.



  

(Kapustin-Willett-Yaakov '09, Jafferis '10, Hama-KH-Lee '10)

the sphere partition function is given by the formula with

For a theory with     gauge group

the -th chiral multiplet: R-charge rep

action

Double-sine function:

Exact Formula



  

(A Digression)

Simple Lie Algebras and Their Representations



  

Simple Lie algebras and their representations

● Lie algebras in general are characterized by the generators

and commutators

● For rank-r simple Lie algebras one can find r independent

generating Cartan subalgebra.commuting generators

Recall



  

Standard normalization:

It is easy to derive the following:

Cartan-Weyl basis :

: ladder operator

: “root”

: Cartan generator



  

● SU(3) has rank 2 and 6 roots

● Choose an arbitrary vector

and divide the roots according to their inner product

with

●  depend on the choice of 

Different choices are related by Weyl reflections.

for SU(3).Weyl group :

● All the positive roots can be written as linear sums of

r simple roots with          coefficients.

Positive roots, simple roots & Weyl group



  

For any representation of Lie algebra, the basis vectors can be chosen 

so as to diagonalize

: “weight”

. . . Now we know all the symbols in the formula!

Representations & weights

A Lie algebra representation is a collection of weights.



  

One-Loop Determinant



  

Determinant: Chiral Multiplet

We wish to reproduce

from the path integral over chiral multiplet in the rep.      and R-charge  r.

● U(1) case

Consider a           vectormultiplet fixed at the saddle-point value.

The path integral over a chiral multiplet with the          charge +1

should give



  

with the localization Lagrangian:

Note:      plays the role of mass.

The “real mass” for the matters can be introduced

by turning on a background vectormultiplet for flavor symmetries.

We evaluate the Gaussian path integral

Determinant: Chiral Multiplet



  

. . . satisfy SU(2) commutation relation.

● The localization Lagrangian becomes

Determinant: Chiral Multiplet

● Rewrite the localization Lagrangian using 

● We need the spectrum of the operators



  

●  can be expanded into spherical harmonics

. . . eigenfunctions of

Spectrum of kinetic operators

Bosons:



  

●  can be expanded into spinor spherical harmonics

Spectrum of kinetic operators

Fermions:



  

The total 1-loop determinant for a chiral multiplet

We found

Determinant: Chiral Multiplet

with           charge +1, R-charge r is



  

for a chiral multiplet of U(1) charge +1, R-charge r.

The gauge group is broken from at the saddle point.

The chiral multiplet in rep. 

= A collection of chiral multiplets with charge

Generalization

Consider a vectormultiplet for the gauge group

fixed at a saddle point

What is              of the chiral multiplet in the rep.



  

The goal is :

Determinant: Vectormultiplet



  

We begin by studying the Lagrangian for 3D photon.

The kinetic operator for the photon is 

where * is Hodge star operator which maps 2-forms to 1-forms.

Determinant: Vectormultiplet

It acts on the basis vielbein forms as

Let us study the spectrum of the operator



  

● Let us study the operator on the round 3-sphere.

= generator of SU(2) in triplet rep.

Spectrum of the kinetic operator



  

can be expanded into vector spherical harmonics

on

on

on

[1]

[2]

[3]

The modes [2] are pure gauge,

The modes [1],[3] satisfy the Lorentz gauge condition

Spectrum of the kinetic operator



  

The pure gauge modes need to be eliminated by gauge fixing.

where indicates the constant mode is excluded.

● Jacobian :

Gauge-Fixing

The gauge field is now decomposed as

Gauge transformation acts on it as



  

Consider now a vectormultiplet for a general gauge group.

● Localization Lagrangian:

-  Gaussian approximation

-  Lorentz gauge

- decompose

Determinant: Vectormultiplet

● Integral over gives 

which cancels with the Jacobian determinant



  

Read off the kinetic operators

Using the Cartan-Weyl basis one finds



  

Determinant: Vectormultiplet

After some cancellations one is left with

Recall our goal is :

Close but not quite!



  

Another factor arises from the further gauge fixing.

- we assumed to be in Cartan subalgebra, not in the full Lie algebra.

-      ( r -component vector in the root space)

is subject to identification by Weyl reflections.

Residual gauge symmetry



  

Compute the Faddeev-Popov's determinant for the gauge fixing

- original    :   (gauge condition :            )

- gauge-fixing term :

Vandermonde's determinant

- ghosts and BRST symmetry :

- Faddeev-Popov determinant :



  

Sphere Partition Function

the sphere partition function is given by the formula with

Summary :

where

*         are redefined to be dimensionless.



  

Application of Sphere Partition Function

● Multiple M2-branes

● F-theorem and F-maximization



  

Worldvolume theory of multiple M2-branes

M2-brane is a (2+1)-dim. fundamental dynamical object

in the 11-dim. quantum supergravity called M-theory.

The worldvolume theory on N coincident M2-branes is dual

AdS/CFT correspondence :

to the 11-dim. supergravity on

Related to the above conjecture,

the free energy of the woldvolume theory of N M2-branes was believed

to behave, at strong coupling, as

The worldvolume theory for multiple M2-branes was not known

until 2007.



  

ABJM model Aharony, Bergman, Jafferis, Maldacena, 2008

The theory of N M2-branes on the orbifold

was shown to be given by a Chern-Simons-matter theory

- Gauge group & Chern-Simons coupling :

- 2 chiral multiplets of R-charge 1/2 in the rep.

- 2 chiral multiplets of R-charge 1/2 in the rep.

- a quartic superpotential

All the fields are              matrices. Why

Worldvolume theory of multiple M2-branes



  

Exact free energy Drukker, Marino, Putrov, 2010

The free energy was evaluated using the exact formula

for sphere partition function.

In the limit of large N, one can use the technique of large-N

matrix integrals.

Worldvolume theory of multiple M2-branes



  

Free energy of a d-dim. CFT on the d-sphere is an important observable,

though it is generally UV divergent.

: UV cutoff

Removing the power divergences one generally finds

(d = odd)

(d = even)

: radius

a-theorem / F-theorem :  For a pair of CFTs connected by a RG flow,

(d = odd)

(d = even)

F-theorem and F-maximization

universal



  

● Consider a 3D theory of vector and chiral multiplets,

which is free in the UV and flows to a SCFT in the IR.

● Localization method allows us to compute the free energy

as a function of the R-charges of the matter chiral multiplets.

● For which value of     is the free energy of the IR SCFT?

The value which maximizes

Closset, Dumitrescu, Festuccia, Komargodski, Seiberg, 2012

F-theorem and F-maximization

● Consistent assignments of R-charges in the UV is not unique.

Any two consistent choices are related by shifts by global symmetries.



  

III.  Squashings

● Squashings

● Elliosoid Partition Function

● AGT Relation



  

Recap

The sphere partition function is given by the formula with

where

The parameter     corresponds to a SUSY deformation

away from the round sphere, called “squashing parameter”.



  

The formula with general b is reproduced from the ellipsoid,

● symmetry

● coordinates

● metric

● vielbein

● spin connection

Squashing to Ellipsoid



  

● On the round sphere they satisfy

● We choose the Killing spinors as

● On the ellipsoid they satisfy

Killing spinors on the ellipsoid

and choose the SUGRA background fields

they satisfy Killing spinor equation.

so that

where



  

● Another, more well-studied, deformation of the sphere is

(Recall )

This is traditionally called the squashed sphere.

● Isometry

“Traditional” Squashing

● Killing spinors :  On the round sphere, there is a pair         satisfying

with

On the squashed sphere, the same pair satisfies

● The partition function is given by :



  

● Another, more well-studied, deformation of the sphere is

(Recall )

This is traditionally called the squashed sphere.

● Isometry

“Traditional” Squashing

● Killing spinors :  On the round sphere, there is another pair         satisfying

● The partition function is given by :

On the squashed sphere, the same pair satisfies

with



  

The 3-manifold has to have an almost contact metric structure

= a triplet satisfying

satisfying an integrability condition

Such a manifold has local coordinate charts

and metric

Condition for a SUSY

In order for a 3-manifold to have a Killing spinor satisfying

Closset, Dumitrescu, Festuccia, Komargodski 2012



  

= circle bundle over Riemann surface (with orbifold singularities)

● Seifert manifolds

have a pair of Killing spinors of opposite R-charge.

Example of Contact Manifolds

● metric

has an isometry



  

Ellipsoid Partition Function



  

Localization argument works, but..

The SUSY saddle points are labeled by

The computation of 1-loop determinant is harder

because the spherical harmonics do not diagonalize the kinetic operators.

* For squashed sphere with

   the spherical harmonics still diagonalize the kinetic term

   although the eigenvalue degeneracy is partially resolved.

isometry,



  

Actually,                   can be computed without knowing the full spectrum

by using the index theorem.

Let us compute it in the two examples,

● The theory of a chiral multiplet charged +1 under

a background U(1) vectormultiplet fixed at the saddle point value.

● pure SYM theory

Determinants from Index theorem

Before this, we need to study the square of the SUSY



  

To use the idea of index theorem, we need to know

on all the fields.

Let us check this for a charged chiral multiplet using

and assuming         are Grassmann even.

Square of SUSY



  

Square of SUSY



  

To use the idea of index theorem, we need to know

on all the fields.

Square of SUSY

For our choice of ellipsoid background and Killing spinors,



  

charged +1 under a background U(1) vectormultiplet

Consider a path integral over

chiral multiplet of R-charge r, 

We move to a new set of path-integration variables.

Determinant: Chiral Multiplet

Transformation rule:



  

● The new integration variables :

SUSY algebra is just where

Cohomological Variables

● The original integration variables:

Note: ● the new variables are all Lorentz scalars.

● the change of variable is local and invertible.



  

The determinant is an integral over the fields

with any convenient Q-exact weight function,

Let us choose

Determinant from Gaussian integral



  

There is a pair of differential operators

which commutes with and shifts the R-charge by

Generic eigenmodes of are paired.

The Ratio of Determinants

We obtained :



  

Determinant and Index

● The ratio of determinants

is related to the “equivariant index”,

which is a generalization of the ordinary index.

The traces may be well-defined even in such cases.

are not well-defined● Sometimes

because of infinite degeneracy for each eigenvalue of H.



  

Evaluation of Determinant

Need to solve this over

The behavior of      near the boundaries:

ansatz:

Let us compute

where



  

Evaluation of Determinant

is spanned by

Similarly,



  

Determinant: Vector Multiplet

We need to gauge-fix.

We next study the integral over the vectormultiplet fields

around the saddle point Recall

SUSY :

The square of SUSY :



  

Pestun's Gauge Fixing

We determine the SUSY transformation rule of ghost so that

We introduce the ghost multiplet and BRST symmetry

on physical fields●  

●  

on the saddle point labeled by



  

Pestun's Gauge Fixing

We require

We use the total supercharge                          for localization.

Let us derive

Take any physical field X. Then



  

Cohomological Variables

● The vector + ghost multiplet

    consists of 6 bosons and 6 fermions.

● Move to a new set of fields (all Lorentz scalars).

Similar to a chiral multiplet in the adjoint rep, R-charge +2.



  

Determinant: Vectormultiplet

= the determinant for an adjoint chiral multiplet with 

use



  

Ellipsoid:

Ellipsoid Partition Function: Summary

metric:

background fields:

Exact partition function:



  

IV.  Yang-Mills Instantons

● Basics of Instantons

● Omega Deformation

● ADHM Construction

● Volume of Instanton Moduli Space

IV.  Yang-Mills Instantons

● Basics of Instantons

● Omega Deformation

● ADHM Construction

● Volume of Instanton Moduli Space



  

Motivations

● We would like to study 4D SUSY gauge theories through

exact computations of observables (e.g. sphere partition functions)

● Localization principle reduces the path integral to

a finite-dimensional integral over the space of saddle points,

but there is an interesting instanton correction.



  

Preliminary: 4D Spinors

We choose them so that

The gamma matrices take the form

A 4-component spinor decomposes into a chiral spinor

and an anti-chiral spinor

We also use

Note:

Our choice :

Gamma matrices are           matrices satisfying



  

Basics of Instantons



  

4D Euclidean Yang-Mills Theory

● Theta angle is periodic,                      because . . .

Q.  What is the action-minimizing configuration for a given k ?

● Tr is the standard trace.

● Action

Yang-Mills coupling

theta angle

Instanton number :



  

Instantons

|k| anti-instanton solutions are defined (for k < 0) in the same way.

For k > 0, the action minimizing configuration satisfies

The solutions are called “k-instanton solutions”.

the anti-self-duality

(anti-)self-dual part

complex gauge coupling

The action :



  

1-Instanton Solution for SU(2)

Ansatz:

(Belavin,Polyakov, Schwarz, Tyupkin)

ASD

The first term vanishes when

(size of instanton).



  

More general k-instanton solutions

. . . look like k blobs in 

● If saddle point approximation is accurate, the YM partition would be

This is exact in “topologically twisted theories”.

● However, has various source of infinities.

IR :  instantons can move anywhere in

UV :  instantons can become zero-size.

for k instantons of U(N).

. . . form a moduli space



  

Omega Deformation



  

Omega deformation

● The volume of a symplectic manifold  ( such as        )

can be deformed by using its symmetry.

● The “Omega-deformed” volume can be evaluated

as a sum over fixed point contributions.

[def] symplectic manifold

= a (2n)-dimensional manifold with a non-degenerate closed 2-form

(example) phase space,

symplectic volume form:

(Nekrasov)



  

Omega deformation

Let M be a symplectic manifold and     a vector field generating its symmetry,

A function H is called the moment map function for v if it satisfies

or in components,

The Omega-deformed volume of M is then defined by

is the parameter of Omega-deformation.

is the ordinary volume.



  

Omega deformation

Omega deformation can be used as an IR regulator.

[example 1]  harmonic oscillators

(Gaussian integral)

Naive volume of the phase space is infinite,

but Omega-deformed volume is finite.



  

Duistermaat-Heckman's Theorem

The omega-deformed volume is a sum of fixed-point contributions.

Here ●    is a fixed point at which 

●         is a product of weights calculated as follows,

If

near the fixed point then

This means that the saddle point approximation is exact.



  

Omega deformation

[example 2] unit sphere

By an elementary integral we find

The two terms in the last line can be interpreted as contributions

from fixed points,

North pole:

South pole:

North pole

South pole



  

DH Theorem and SUSY

The Omega-deformed volume can be written in the form of SUSY integral.

SUSY:

The integral localizes onto fixed points (zeroes of v).

Note: this Q is just an operator acting on differential forms.

Since Q squares to           it defines a cohomology on the space of

-invariant differential forms, called equivariant cohomology.



  

ADHM Construction



  

ADHM Construction

● we would like to compute the Omega-deformed volume

of instanton moduli spaces.

● There is a nice parametrization of the moduli space

(and construction of instanton solutions)

due to Atiyah-Drinfeld-Hitchin-Manin.

There is an 1-1 correspondence between U(N) k-instanton solutions

and a set of matrices called “ADHM data”.



  

ADHM data

● Slightly different definition :

matrices satisfying subject to the GL(k) equivalence

● The number of independent parameters is

is the following set of complex matrices

which satisfies the ADHM equation

and is identified by the U(k) equivalence relation



  

Construction of U(N) k-instantons

● For define

● Let

satisfying some conditions to be determined.

Identified later with



  

Condition 1:

is a invertible matrix.

● Let us then define a U(N) gauge field by

● Then there is a matrix          satisfying

which is unique up to U(N) gauge rotations

Construction of U(N) k-instantons



  

is anti-self-dual under certain conditions.

remember:

Condition 2: commutes with

Then

Construction of U(N) k-instantons

recall :



  

commutes with

Construction of U(N) k-instantons

commutes withThe condition 2 amounts to :

Denote

Then

It commutes with if



  

Let us show that has instanton number k.

Construction of U(N) k-instantons

● There is a matrix     such that

which is unique up to             rotations.

●  are connections on the bundles

● Since  is a trivial bundle, one can show

So the instanton number of      is minus the instanton number of 



  

Let us show that has instanton number k.

Construction of U(N) k-instantons

● Since  one can take

where

● Substitute                   in



  

Remark 1: ● For           gauge field on       which is anti-self-dual,

the          part can always be gauged away.

We may assume     is an              gauge field.

Construction of U(N) k-instantons

Remark 2: ● The equation                        is invariant under

where

It acts on the ADHM data as

This leaves invariant.



  

: the framing of the vector bundle E at infinity.

Remark 2': ● On the other hand, at              one has

Construction of U(N) k-instantons

● If we require as boundary condition,

then the above transformation rule has to be modified.

With the above boundary condition on the     in

corresponds to the constant U(N) gauge rotation.



  

ADHM Construction : Summary

SU(N) k-instanton solutions can be constructed from the ADHM data

● The moduli space is hyperKahler, so it is a symplectic manifold.

The moduli space of framed SU(N) k-instantons

= the space of ADHM data

● It has bad singularities (corresponding to UV infinities),

which can be smoothed by

Other facts:



  

Volume of

the Instanton Moduli Space



  

Volume of the Moduli Space

and compute the volume using the fixed point theorem.

● We introduce the Omega deformation corresponding to

● rotation of      :

● gauge rotation:

[vector field]

● We need to

   ① find all the fixed points.

   ② compute the weights at each fixed point.



  

Fixed Points

So the condition for fixed points is

for a           Hermite matrix

Recall the ADHM data are subject to the           identification

We solve the following for a generic choice of

We wish to show :

Each fixed point is labeled by k boxes forming N Young diagrams.



  

are eigenvectors of

1.

since the eigenvalues of     do not match.

2. are also    -eigenvectors.

because of eigenvalue mismatch.



  

Assume hereafter 

3.

[proof] If not, there is a nonzero

There is a nonzero row vector of the form

such that

(contradiction)

Then

* from the lemma 2.

[proof]

4.

Now we also know:



  

5.

[proof] If not, there is a nonzero vector of the form

such that

(contradiction)

Then

[proof]

6. The vectors span the k-dimensional space.

If a row vector satisfies

then any vector of the form satisfies the same.

Choose     which also satisfies

Then (contradiction)



  

The solutions are summarized as follows.

●  

If is nonzero, it is an eigenvector for

● There are k linearly independent vectors of the form

where

● The eigenvalues of      are described by

k boxes forming N Young diagrams.

Fixed Points: Summary



  

Weights and Character

At each fixed point, we need to study the action of the symmetry

on the tangent space, and compute the product of weights

Alternatively, one can consider the “character” 



  

Let be a fixed point and

the coordinates for small variations.

The character :

weights is too many.

Weights and Character

The matrix elements of transform

under the symmetry     with the weights



  

Correct Tangent Space

● We need to subtract variations generated by GL(k) gauge transformations.

● The correct tangent space is

● We need to restrict to variations preserving

● Note :

Tangent space coordinates are subject to restrictions

and gauge equivalence.



  

Correct Character

. . . should be a sum of 2Nk terms.

The correct character is a difference of traces

Let us rewrite using and substituting



  

Here

Nakajima-Yoshioka's formula



  

Volume of the Moduli Space: Summary

● Omega-deformed volume of the U(N) k-instanton moduli space was defined

using SO(4) rotation & constant gauge symmetry.

● the application of DH fixed point formula gives

● The fixed points are labeled by a set of N Young diagrams

whose total number of boxes is k.

● Nakajima-Yoshioka's formula

Localization with a SUSY      satisfying



  

Comments:

● At the fixed points, what do the instanton solutions look like?

. . . It is invariant under rotation            and constant gauge transformation

      so it is a sum of “point-like” “U(1) instantons” localized at the origin.

● There is a SUSY gauge theory whose path integral gives

the generating function of the volume of moduli space.

= Topological twisted              SYM theory on the Omega background. 



  

IV.  Four-Sphere Partition Function

● Basics of N=2 SUSY theories

● Killing Spinors

● Construction of SUSY theories

● Topological Twist and Omega background

● Exact Partition Function via Localization

● N=4 SYM and Gaussian Matrix Models

● AGT relation and Ellipsoid Partition Function



  

Basics of N=2 SUSY theories



  

4D     -extended SUSY

: chiral spinor

: anti-chiral spinor

R-symmetry

preserving the anti-commutation relation.

rotates the supercharges

We focus on the theories with              SUSY.



  

4D               field theories

Multiplets:

In  Euclidean theory on     , they transform under the symmetry

SUSY parameter:

● vectormultiplet  :  gauge group

vector

complex scalar

chiral spinor

anti-chiral spinor

(auxiliary scalar)

● hypermultiplet  :  representation

scalar

chiral spinor

anti-chiral spinor

(auxiliary scalar)



  

Hypermultiplets in detail

● “r hypermultiplets” means

● The scalars obey the reality condition

invariant tensor of

invariant tensor of

● Gauge fields couple to them via

where the representation matrix            is Hermite and satisfies

namely the gauge group has to be a subgroup of



  

Hypermultiplets : Example

● Choose the first n to be in the fundamental, the rest anti-fundamental.

We use

A hypermultiplet in the fundamental rep of

are 2n component quantities.●  

● The               representation matrix of 

fundamental rep

gives an embedding 

● The reality condition is satisfied by

1 fundamental hypermultiplet

= 1 fundamental scalar 1 anti-fundamental scalar and superpartners.



  

SUSY theory on

Transformation rules

● vectormultiplet

● hypermultiplet (on-shell) Note:

There is no off-shell transformation rule

for hypermultiplet

- with finitely many auxiliary fields

- realizing all the SUSY off-shell



  

SUSY theory on

Invariant Lagrangian

* for U(1) group only, 

* we have suppressed the indices I, J,  . . . according to the rule

● mass term for hypermultiplet can be introduced by

turning on background vectormultiplets.



  

Killing Spinors



  

Killing spinors on round sphere

● On round sphere of any dimension with radius

the Killing spinor equation of the following form has solutions.

● For             SUSY theory on 4-sphere,

the SUSY is generated by Killing spinors            satisfying

1st order differential equation for 16 functions

The solutions correspond to the supercharges of 4D N=2 SCA.



  

Superconformal Theories on sphere

● 4D N=2 theories with no mass terms or FI terms are classically conformal. 

Such theories on sphere can be obtained from the theories on

by a conformal map, because the round sphere is conformally flat.

Such theories are invariant under any of the 16 independent Killing spinors.

● Mass term or FI term break the superconformal invariance.

They are invariant under a subset of the Killing spinors satisfying

: constant traceless U(2) matrices satisfying

Using R-symmetries one can set

Let us study a particular solution.



  

A coordinate system on the four-sphere

round sphere: coordinates:

Note:         are the rotation angles of 

The North & South poles are the fixed points.

vielbein:

metric:



  

A specific Killing spinor

has the following solution on the round sphere of radius

where are

Killing spinors on the round 

This satisfies and

Near the north and the south poles, this is similar to the Omega-deformation



  

Squashing

If the same            satisfy Killing spinor equation on the ellipsoid, 

coordinates: vielbein:

Then we have

Omega background with



  

Generalized Killing spinor equation

We need to study whether satisfy the Killing spinor equation

where the covariant derivatives contain R-symmetry gauge fields,

SU(2) U(1)

and                       are their field strengths.

This Killing spinor equation originates from the off-shell 4D N=2 supergravity.

de Wit, van Holten, van Proeyen 1980, 1981; de Wit, van Holten, van Proeyen 1984,. . .

We solved this for the supergravity background fields



  

Construction of SUSY theories



  

SUSY theory on curved backgrounds

Transformation rules (vectormultiplet)

Square of SUSY

where



  

SUSY theory on curved backgrounds

Off-shell transformation rules (hypermultiplet)

we only have to realize off-shell a single supercharge

corresponding to a specific choice of

Note:

Introduce an auxiliary field and auxiliary spinors

The added terms are invariant under an acting on the indices

We choose            to satisfy



  

SUSY theory on curved backgrounds

Off-shell transformation rules (hypermultiplet)

Then the following is realized off-shell.



  

An explicit choice of the auxiliary spinors

We chose

and need to solve

An explicit choice is



  

SUSY theory on curved backgrounds

Lagrangians



  

SUSY theory on curved backgrounds

Lagrangians

where                      is an              -triplet background field satisfying

The matter mass can be introduced by turning on a background

vectormultiplet with

Note:         here is related to              in the discussion of Killing spinors on 



  

Summary: 4D             SUSY theories on curved spaces

● There are vectormultiplet and hypermultiplets.

● Invariant Lagrangians: and the matter mass term.

● Difficulty in writing off-shell SUSY for hypermultiplets.

On flat space

On sphere

● Killing spinor equation has 16 solutions (= supercharges in N=2 SCA)

● Straightforward to write superconformal theories.

For theories with mass / FI terms, Killing spinors satisfy stronger conditions

On ellipsoid

● One needs to turn on supergravity backgrounds

● One can write the off-shell SUSY for hypermultiplets

since there is only one supercharge. We introduced



  

Topological Twists

and Omega Backgrounds



  

Topologically Twisted Gauge Theory Witten 1988

It is known that

4D N=2 SUSY gauge theories can be put on any curved spaces

preserving a single “scalar SUSY”, by a procedure called “topological twist”.

Let us rephrase this within the supergravity framework.

Recall the Killing spinor equations:

solves these equations if and

namely if as 2 x 2 matrices.



  

Topologically Twisted Gauge Theory

then the doublets of SU(2) R-symmetry behave the same way as

anti-chiral spinors under parallel transport.

● If one chooses               and

● Let us look at a SUSY transformation rule

Here we defined       by simply “renaming” the components of

● By a similar renaming we obtain

● The SUSY      acts on them as

and



  

Topologically Twisted Gauge Theory

Under the above scalar SUSY, the Yang-Mills action is almost exact.

* the pair                  serve as the Lagrange multipler to put

   the constraint

This theory is therefore a model to compute the generating function

of integrals over instanton moduli spaces,



  

Omega background Nekrasov, 2002

● To regularize the integral over the moduli spaces,

Nekrasov considered a deformation of topologically twisted theories on

such that

If             , after Pestun's gauge fixing this becomes

● The path integral of topological twisted SYM would then give

This is called “Nekrasov's instanton partition function”.

● On the other hand, Nekrasov also argued that the path integral should give



  

Omega background

Let us reinterpret the Omega-background within the supergravity framework.

Choose the Killing spinor on       as

so that

This satisfies the Killing spinor equation

if and or more explicitly



  

Polar regions of the ellipsoid

Near the north pole vanishes linearly but      remains finite.

By a local Lorentz and SU(2) R-symmetry rotation one can bring them

into the form

Recall we chose the Killing spinor on the ellipsoid as

where are Killng spinors on 

Therefore, on ellipsoid background we need



  

Exact Partition Function

via Localization



  

Saddle Points

● On the ellipsoid we have only one supercharge

We use it for the localization program.

● The usual saddle point condition

turned out too complicated to solve.

● On the round sphere, Pestun found a nicer set of saddle-point conditions

was introduced at the discussion of FI and mass terms.

where



  

Saddle Points (for sphere)

The above saddle point condition is solved by

But recall

●              at the north pole

●              at the south pole

So we need to include the effect of

● point-like instantons localized at the north pole

-- topologically twisted theory on     -background = Nekrasov's partition function

● point-like anti-instantons localized at the south pole

-- anti topologically twisted theory

can be nonzero at the north pole,

can be nonzero at the south pole.



  

Saddle Points (for ellipsoid)

So we assumed the same (following) saddle-point condition and proceeded.

For ellipsoid, we could not find such a nice “re-completion” into squares

as the above.

For hypermultiplets,



  

Partition Function

● Nekrasov partition functions 

express the instanton contributions at N,S poles

● The classical action          is a sum of

where

● It remains to compute 



  

One-Loop Determinant

We compute the determinant using cohomological variables.

● Vectormultiplet (plus ghosts)

consists of 10 Grassmann even fields, 10 Grassmann odd fields.

One can rearrange them into

[5 bosons] [5 fermions]

[5 fermions] [5 bosons]



  

One-Loop Determinant (vectormultiplet)

●            is the ratio of determinants of

One can find a differential operators mapping between the space of

wave functions of      and

but the following argument does not rely much on its explicit form.



  

Atiyah-Bott Fixed Point Theorem

● Now consider, instead of the ratio of determinant, the difference of traces,

Then           involves a finite diffeomorphism

It has two fixed points, the north and south poles.

Near the north pole one can introduce local complex coordinates

such that

● Here is a nice argument when computing the traces. Recall



  

Atiyah-Bott Fixed Point Theorem

● For linear operators expressible in terms of integration kernels,

the trace is given by

● The trace therefore localizes onto the two poles where

●           is a finite diffeomorphism operator, so it is expressed using the kernel

Note:



  

Atiyah-Bott Fixed Point Theorem

Let us compute the enumerator of

with and

rotates ● the four components of        by phases

● the 3 components of          by phases



  

From Index to Determinant

we obtained

To translate this into determinant, we need to series expand it in  

By a suitable “regularization” one finds the correct expansion is

A term corresponds to an eigenvalue

in the denominator / enumerator.



  

Determinant from vectormultiplet

This can be expressed using Upsilon function



  

One-Loop Determinant (hypermultiplet)

Let us move from the original set of fields

to cohomological variables.

The equivariant index localizes onto the north, south poles.

The north-pole contribution is

The enumerator can be computed most easily in the gauge

[identification of indices]



  

One-Loop Determinant (hypermultiplet)

Why? Notice that                         are anti-self-dual 2-forms, and so are

rotates

● the 2 components of chiral spinors at NP by phases

● the 2 components of anti-chiral spinors at NP by phases

and

and



  

One-Loop Determinant (hypermultiplet)

● The eigenvalues appear in pairs of opposite sign.

Notes:

● The one-loop determinant is the square-root of the product of eigenvalues,

because the hypermultiplet fields obey reality condition.



  

Partition Function: Summary

● Nekrasov partition functions 

express the instanton contributions at N,S poles

● The classical action          is a sum of

where

● One-loop determinant:



  

A closer look at the “regularization”

How to justify our prescription of expanding into series?

Let us recall the problem of equivariant index for hypermultiplet,

The index depends only on the terms of highest order in the derivative in

But the behavior of each zeromode of            depends on the subleading terms. 

One can compute it using fixed point theorem, or one can compute it as

an index of a differential operator



  

A closer look at the “regularization”

Let us see what kind of zeromodes localize near the NP.

In the gauge takes the form

For has no zeromodes but      has the following zeromodes.

Witten proposed to use a vector field     and deform      so that

the zeromodes localize to    -fixed points. Witten, “Holomorphic Morse Inequalities,” 1984



  

N=4 SYM

and Gaussian Matrix Models



  

Wilson loops in N=4 SYM

● A conjecture by Drukker-Gross, Erickson-Semenoff-Zarembo

The expectation value of supersymmetric circular Wilson loops

in N=4 SYM is given by a Gaussian matrix integral.

Pestun succeeded in showing this using localization.

● The theory of a vectormultiplet and an adjoint hypermultiplet.

N=2* theory

● Labeled by the mass parameter       for the hypermultiplet

● a special value of mass               corresponds to the N=4 theory.



  

Partition function for N=2* SYM

Special values of      :

For U(N) the partition function can be written as



  

AGT Relation and

Ellipsoid Partition Function



  

Dynamics of Wrapped M5-branes

● M5-brane is another fundamental object in M-theory, 

which has (5+1)-dimensional worldvolume.

● It is believed that the worldvolume of multiplet M5-branes support

a nontrivial 6d SCFT called (2,0) theory.

● When N M5-branes are wrapped on a Riemann surface

it gives rise to a 4D              superconformal gauge theory

which is a kind of quiver theory.

[example of quiver diagram]

matter matter

gauge symmetry flavor symmetry

Let us look at examples of             (two M5-branes) for different 



  

SU(2) gauge symmetry
(vectormultiplet)

matters (hypermultiplet)

[1] 4-punctured sphere  =  SU(2) SQCD with

● One can associate a mass parameter to each puncture.

Facts:

● The shape (positions of punctures) determines gauge coupling.

The arrow          corresponds to the weak coupling limit.

Examples of 4D SCFTs

● each puncture (external leg) correspond to an SU(2) flavor symmetry.

The SQCD has flavor symmetry



  

S-duality

Facts:

● There are more than one weak-coupling limits.

They give different Lagrangian descriptions for a single “theory”.

4-punctured sphere SU(2) SQCD[1]SU(2) SQCD[2]

SQCD[2] weak coupling

SQCD[2] strong coupling

SQCD[1] strong coupling

SQCD[1] weak coupling

“S-duality”



  

matters

gauge symmetry

[2] 5-punctured sphere  =  an  gauge theory

Examples of 4D SCFTs



  

-cycle shrinks

-cycle shrinks

(S-dual)

[3] 1-punctured torus  =  SU(2) theory with an adjoint matter  

Examples of 4D SCFTs



  

AGT relation Alday, Gaiotto, Tachikawa, 2009

● the partition function of on the round 4-sphere

Liouville: sphere 4-point function

Gauge: SU(2) SQCD with 4 doublet matters

Liouville: torus 1-point function

Gauge: SU(2) theory with a triplet matter. 

Generalization to              is also known.

A surprising agreement was found between

● the correlator of Liouville theory with c = 25 on



  

Liouville Theory

Liouville theory is an interacting 2D CFT with a coupling constant

It has 2 copies of Virasoro algebra,

with central charge

It also exhibits strong-weak coupling duality

of gauge theory corresponds to  Liouville correlators at

What gauge theories correspond to the Liouville correlators for general b ?

There should be a SUSY deformation of round sphere.

The SUSY deformation (squashing) was first found for 3-sphere.

The squashing of the 4-sphere turned out much more difficult.



  

Conformal blocks

The solutions (holomorphic functions in    or    ) are called conformal blocks.

One can find a complete set of conformal blocks for each channel.

t-channel

Example: sphere 4-point function

Liouville correlator satisfies a set of

● holomorphic differential equation in

● holomorphic differential equation in

that follow from Virasoro symmetry.

s-channel

parametrizes

independent solutions



  

Construction of Correlators

s-channel

Here 

the correlator is well-defined and channel-independent.

has to be chosen so that

(The 4-sphere partition function of gauge theories takes the same structure.)

Example: sphere 4-point function



  

Change of basis

● Recall they are solutions to the same differential equation.

They are therefore related by a linear transform

s-channelt-channel

[example] sphere 4-point block in two channels.



  

Change of basis

-cycle shrinks

-cycle shrinks

[example] torus 1-point block in two channels.

The coefficient can in principle be computed using only

the representation theory of Virasoro algebra.

3d ellipsoid partition function?



  

S-duality wall

● When two mutual S-dual theories meet along a 3D wall,

a 3D              SUSY gauge theory is induced on it.

We now notice the similarity between

● different channels in which to construct

the basis of conformal blocks

● different but mutually S-dual Lagrangians

describing the same 4D theory

[A corollary of AGT relation] Drukker, Gaiotto, Gomis '10

● The ellipsoid partition function of the wall theory

should agree with

Identification of the wall theory :  for torus 1-point KH-Lee-Park '10

for sphere 4-point Le Floch, '1512
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